We examine metrological scenarios where the parameter of interest is encoded onto a quantum state through the action of a noisy quantum gate and investigate the ultimate bound to precision by analyzing the behavior of the quantum Fisher information (QFI). We focus on qubit gates and consider the possibility of employing successive applications of the gate. We go beyond the trivial case of unitary gates and characterize the robustness of the metrological procedure introducing noise in the performed quantum operation, looking at how this affects the QFI at different steps (gate applications). We model the dephasing and tilting noise affecting qubit rotations as classical fluctuations governed by a von Mises-Fisher distribution. Compared to the noiseless case, in which the QFI grows quadratically with the number of steps, we observe a nonmonotonic behavior, and the appearance of a maximum in the QFI, which defines the ideal number of steps that should be performed in order to precisely characterize the action of the gate. Analyzing also the combination of different types of gate imperfections we defined a form of generic noise, finding also nontrivial regimes in which the combination of the two different noises leads to a more resilient QFI or, more remarkably, to an enhancement of the QFI with respect to the case in which only one type of noise is considered.

Generalized phase estimation in noisy quantum gates / G. Ragazzi, S. Cavazzoni, P. Bordone, M. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 110:5(2024 Nov 19), pp. 052425.1-052425.11. [10.1103/PhysRevA.110.052425]

Generalized phase estimation in noisy quantum gates

M. Paris
Ultimo
2024

Abstract

We examine metrological scenarios where the parameter of interest is encoded onto a quantum state through the action of a noisy quantum gate and investigate the ultimate bound to precision by analyzing the behavior of the quantum Fisher information (QFI). We focus on qubit gates and consider the possibility of employing successive applications of the gate. We go beyond the trivial case of unitary gates and characterize the robustness of the metrological procedure introducing noise in the performed quantum operation, looking at how this affects the QFI at different steps (gate applications). We model the dephasing and tilting noise affecting qubit rotations as classical fluctuations governed by a von Mises-Fisher distribution. Compared to the noiseless case, in which the QFI grows quadratically with the number of steps, we observe a nonmonotonic behavior, and the appearance of a maximum in the QFI, which defines the ideal number of steps that should be performed in order to precisely characterize the action of the gate. Analyzing also the combination of different types of gate imperfections we defined a form of generic noise, finding also nontrivial regimes in which the combination of the two different noises leads to a more resilient QFI or, more remarkably, to an enhancement of the QFI with respect to the case in which only one type of noise is considered.
No
English
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Recovering Information in Sloppy QUantum modEls (RISQUE)
   RISQUE
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   2022T25TR3_003

   Chiral quantum walks for enhanced energy storage, transport and routing (QWEST)
   QWEST
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   P202222WBL_001
19-nov-2024
American Physical Society (APS) : American Institute of Physics
110
5
052425
1
11
11
Pubblicato
Periodico con rilevanza internazionale
orcid
Aderisco
info:eu-repo/semantics/article
Generalized phase estimation in noisy quantum gates / G. Ragazzi, S. Cavazzoni, P. Bordone, M. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 110:5(2024 Nov 19), pp. 052425.1-052425.11. [10.1103/PhysRevA.110.052425]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
4
262
Article (author)
Periodico con Impact Factor
G. Ragazzi, S. Cavazzoni, P. Bordone, M. Paris
File in questo prodotto:
File Dimensione Formato  
PhysRevA.110.052425.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2406.01590v2.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 537.01 kB
Formato Adobe PDF
537.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1137975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact