Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells scattered in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These cells originate in the olfactory placode and migrate into the basal forebrain in late embryonic life. Here, we show that reelin, which is expressed along the route of the migrating cells, has an inhibitory role in guiding GnRH neurons to the basal forebrain. Only a small (approximately 5%) subpopulation of these neurons expresses one of the reelin receptors (ApoER2/Lrp8), and all GnRH neurons appear to lack the intracellular adaptor protein Dahl, suggesting that the function of reelin is not mediated by the conventional signal transduction pathway. The importance of reelin in the establishment of GnRH neurons in the hypothalamus was confirmed by our finding that the brains of developing and adult reeler mice of both sexes contained a markedly reduced number of these neuroendocrine neurons. Furthermore, the testes of adult males showed dilation of seminiferous tubules and reduction in their density when compared with controls. Mutants lacking the reelin receptors ApoER2 and Vldlr, and scrambler mice lacking Dab1, showed a normal complement of GnRH neurons in the hypothalamus, confirming that the effect of reelin in their migration is independent of Dab1.

Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons / A. Cariboni, S. Rakic, A. Liapi, R. Maggi, A. Goffinet, J.G. Parnavelas. - In: DEVELOPMENT. - ISSN 0950-1991. - 132:21(2005), pp. 4709-4718.

Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons

A. Cariboni
Primo
;
R. Maggi;
2005

Abstract

Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells scattered in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These cells originate in the olfactory placode and migrate into the basal forebrain in late embryonic life. Here, we show that reelin, which is expressed along the route of the migrating cells, has an inhibitory role in guiding GnRH neurons to the basal forebrain. Only a small (approximately 5%) subpopulation of these neurons expresses one of the reelin receptors (ApoER2/Lrp8), and all GnRH neurons appear to lack the intracellular adaptor protein Dahl, suggesting that the function of reelin is not mediated by the conventional signal transduction pathway. The importance of reelin in the establishment of GnRH neurons in the hypothalamus was confirmed by our finding that the brains of developing and adult reeler mice of both sexes contained a markedly reduced number of these neuroendocrine neurons. Furthermore, the testes of adult males showed dilation of seminiferous tubules and reduction in their density when compared with controls. Mutants lacking the reelin receptors ApoER2 and Vldlr, and scrambler mice lacking Dab1, showed a normal complement of GnRH neurons in the hypothalamus, confirming that the effect of reelin in their migration is independent of Dab1.
GnRH neurons; Migration; Reelin
Settore BIO/09 - Fisiologia
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/11366
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact