We study the local well-posedness in the framework of the Sobolev space (Formula presented), for a semilinear parabolic equation with asymptotically polynomial nonlinearity up to the critical Sobolev growth. Then we establish the dichotomy between blow-up and global existence for solutions with small energy by means of variational methods and the so-called potential well argument.

Blow-up and global solutions for subcritical and critical parabolic equations in {$\Bbb R^N$} / M. Ishiwata, B. Ruf, F. Sani, E. Terraneo. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 30:3-4(2025 Apr), pp. 141-176. [10.57262/ade030-0304-141]

Blow-up and global solutions for subcritical and critical parabolic equations in {$\Bbb R^N$}

E. Terraneo
Ultimo
2025

Abstract

We study the local well-posedness in the framework of the Sobolev space (Formula presented), for a semilinear parabolic equation with asymptotically polynomial nonlinearity up to the critical Sobolev growth. Then we establish the dichotomy between blow-up and global existence for solutions with small energy by means of variational methods and the so-called potential well argument.
35B33; 35B40; 35K15;
Settore MATH-03/A - Analisi matematica
apr-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
ade030-0304-141.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 378.62 kB
Formato Adobe PDF
378.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1136135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact