Background: One of the main challenges in the maintenance of registries is to keep a high follow-up rate and a reliable strategy to limit dropout is currently lacking. Aim of this study was to utilize machine learning (ML) models to highlight the characteristics of patients who are most likely to drop out, and to evaluate the potential cost effectiveness of the implementation of a follow-up system based on the obtained data. Methods: All patients recruited in the local spine surgery registry were included and demographic, peri- and postoperative data were collected. Five ML models were trained and evaluated for response to follow-up prediction. Explainable and Cautious AI were then implemented to increase the trustworthiness of the model. The efficacy and cost effectiveness of the current follow-up strategy (call everybody) were compared to a strategy based on the implemented model (call only patients with high dropout risk). Results: Records from 4652 patients were available. The random forest (RF) outperformed all models in the prediction of response to follow-up. Among the considered variables, the ones that had the most weight were length of follow up, level of the main pathology and extent of surgery, SF-36 and BMI. Interpretable Decision Trees (IDT) and selective prediction models further increased the performance of the model. The cost reduction calculation predicted that implementing the developed ML model in the clinical practice would, over time, result in a reduction of costs by 31%, with only 2‰ missed calls. Conclusion: ML models can effectively identify patients with high risk of dropout. The RF model outperformed all evaluated models, and was further improved with the use of Controllable AI. The application of ML to the follow-up strategy could reduce costs and limit missed responses.

The use of machine learning for the prediction of response to follow-up in spine registries / A. Baroncini, A. Campagner, F. Cabitza, F. Langella, F. Barile, P. Bellosta-López, D. Compagnone, R. Cecchinato, M. Damilano, A. Redaelli, D. Vanni, P. Berjano. - In: INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS. - ISSN 1386-5056. - 195:(2025 Mar), pp. 105752.1-105752.10. [10.1016/j.ijmedinf.2024.105752]

The use of machine learning for the prediction of response to follow-up in spine registries

R. Cecchinato;
2025

Abstract

Background: One of the main challenges in the maintenance of registries is to keep a high follow-up rate and a reliable strategy to limit dropout is currently lacking. Aim of this study was to utilize machine learning (ML) models to highlight the characteristics of patients who are most likely to drop out, and to evaluate the potential cost effectiveness of the implementation of a follow-up system based on the obtained data. Methods: All patients recruited in the local spine surgery registry were included and demographic, peri- and postoperative data were collected. Five ML models were trained and evaluated for response to follow-up prediction. Explainable and Cautious AI were then implemented to increase the trustworthiness of the model. The efficacy and cost effectiveness of the current follow-up strategy (call everybody) were compared to a strategy based on the implemented model (call only patients with high dropout risk). Results: Records from 4652 patients were available. The random forest (RF) outperformed all models in the prediction of response to follow-up. Among the considered variables, the ones that had the most weight were length of follow up, level of the main pathology and extent of surgery, SF-36 and BMI. Interpretable Decision Trees (IDT) and selective prediction models further increased the performance of the model. The cost reduction calculation predicted that implementing the developed ML model in the clinical practice would, over time, result in a reduction of costs by 31%, with only 2‰ missed calls. Conclusion: ML models can effectively identify patients with high risk of dropout. The RF model outperformed all evaluated models, and was further improved with the use of Controllable AI. The application of ML to the follow-up strategy could reduce costs and limit missed responses.
Artificial intelligence; Follow-up strategy; Machine Learning; Random forest model; Spine registries; Spine surgery;
Settore MEDS-19/A - Malattie dell'apparato locomotore
mar-2025
3-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
The use of machine learning for the prediction of response to follow-up in spine registries.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1136017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact