Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.

3-Ethynyltriimidazo[1,2-a:1′,2′-c:1″,2″-e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions / D. Malpicci, D. Maver, E. Rosadoni, A. Colombo, E. Lucenti, D. Marinotto, C. Botta, F. Bellina, E. Cariati, A. Forni. - In: MOLECULES. - ISSN 1420-3049. - 29:9(2024 Apr 25), pp. 1967.1-1967.15. [10.3390/molecules29091967]

3-Ethynyltriimidazo[1,2-a:1′,2′-c:1″,2″-e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions

D. Malpicci
Primo
;
D. Maver
Secondo
;
A. Colombo;E. Lucenti;D. Marinotto;E. Cariati
Penultimo
;
A. Forni
Ultimo
2024

Abstract

Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.
crystallization-enhanced emission; dual emission; organic room temperature phosphorescence; supramolecular interactions
Settore CHEM-03/A - Chimica generale e inorganica
25-apr-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Molecules 2024, 29(9), 1967.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1132576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact