We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of 1-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Maríková, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333-351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.

The domination monoid in o-minimal theories / R. Mennuni. - In: JOURNAL OF MATHEMATICAL LOGIC. - ISSN 0219-0613. - 22:1(2022 Apr). [10.1142/S0219061321500306]

The domination monoid in o-minimal theories

R. Mennuni
2022

Abstract

We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of 1-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Maríková, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333-351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.
Archimedean valuation; domination monoid; invariant types; o-minimality;
Settore MATH-01/A - Logica matematica
apr-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
2008.01770v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Creative commons
Dimensione 923.89 kB
Formato Adobe PDF
923.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1131904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact