We consider the problem of constructing strings over an alphabet Σ that start with a given prefix u, end with a given suffix v, and avoid occurrences of a given set of forbidden substrings. In the decision version of the problem, given a set Sk of forbidden substrings, each of length k, over Σ, we are asked to decide whether there exists a string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ϵ Sk occurs in x. Our first result is an O(|u| + |v| + k|Sk|)-time algorithm to decide this problem. In the more general optimization version of the problem, given a set S of forbidden arbitrary-length substrings over Σ, we are asked to construct a shortest string x over S such that u is a prefix of x, v is a suffix of x, and no s ϵ S occurs in x. Our second result is an O(|u| + |v| + ||S|| · |Σ|)-time algorithm to solve this problem, where ||S|| denotes the total length of the elements of S. Interestingly, our results can be directly applied to solve the reachability and shortest path problems in complete de Bruijn graphs in the presence of forbidden edges or of forbidden paths. Our algorithms are motivated by data privacy, and in particular, by the data sanitization process. In the context of strings, sanitization consists in hiding forbidden substrings from a given string by introducing the least amount of spurious information. We consider the following problem. Given a string w of length n over Σ, an integer k, and a set Sk of forbidden substrings, each of length k, over Σ, construct a shortest string y over Σ such that no s ϵ Sk occurs in y and the sequence of all other length-k fragments occurring in w is a subsequence of the sequence of the length-k fragments occurring in y. Our third result is an O(nk|Sk| · |Σ|)-time algorithm to solve this problem.

Constructing Strings Avoiding Forbidden Substrings / G. Bernardini, A. Marchetti-Spaccamela, S.P. Pissis, L. Stougie, M. Sweering (LEIBNIZ INTERNATIONAL PROCEEDINGS IN INFORMATICS). - In: 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)[s.l] : Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2021. - ISBN 9783959771863. - pp. 1-18 (( Intervento presentato al 32. convegno Annual Symposium on Combinatorial Pattern Matching, CPM 2021 tenutosi a Wroclaw nel 2021 [10.4230/lipics.cpm.2021.9].

Constructing Strings Avoiding Forbidden Substrings

G. Bernardini
Primo
;
2021

Abstract

We consider the problem of constructing strings over an alphabet Σ that start with a given prefix u, end with a given suffix v, and avoid occurrences of a given set of forbidden substrings. In the decision version of the problem, given a set Sk of forbidden substrings, each of length k, over Σ, we are asked to decide whether there exists a string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ϵ Sk occurs in x. Our first result is an O(|u| + |v| + k|Sk|)-time algorithm to decide this problem. In the more general optimization version of the problem, given a set S of forbidden arbitrary-length substrings over Σ, we are asked to construct a shortest string x over S such that u is a prefix of x, v is a suffix of x, and no s ϵ S occurs in x. Our second result is an O(|u| + |v| + ||S|| · |Σ|)-time algorithm to solve this problem, where ||S|| denotes the total length of the elements of S. Interestingly, our results can be directly applied to solve the reachability and shortest path problems in complete de Bruijn graphs in the presence of forbidden edges or of forbidden paths. Our algorithms are motivated by data privacy, and in particular, by the data sanitization process. In the context of strings, sanitization consists in hiding forbidden substrings from a given string by introducing the least amount of spurious information. We consider the following problem. Given a string w of length n over Σ, an integer k, and a set Sk of forbidden substrings, each of length k, over Σ, construct a shortest string y over Σ such that no s ϵ Sk occurs in y and the sequence of all other length-k fragments occurring in w is a subsequence of the sequence of the length-k fragments occurring in y. Our third result is an O(nk|Sk| · |Σ|)-time algorithm to solve this problem.
Data sanitization; De Bruijn graphs; Forbidden strings; String algorithms
Settore INFO-01/A - Informatica
2021
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
LIPIcs.CPM.2021.9.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 918.75 kB
Formato Adobe PDF
918.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1131838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact