Topological defects are singularities within a field that cannot be removed by continuous transformations. The definition of these irregularities requires an ordered reference configuration, calling into question whether they exist in disordered materials, such as glasses. However, recent work suggests that well-defined topological defects emerge in the dynamics of glasses, even if they are not evident in the static configuration. In this study, we reveal the presence of topological defects in the vibrational eigenspace of a two-dimensional experimental colloidal glass. These defects strongly correlate with the vibrational features and spatially correlate with each other and structural "soft spots", more prone to plastic flow. This work experimentally confirms the existence of topological defects in disordered systems revealing the complex interplay between topology, disorder, and dynamics.

Experimental identification of topological defects in 2D colloidal glass / V. Vaibhav, A. Bera, A.C.Y. Liu, M. Baggioli, P. Keim, A. Zaccone. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 16:1(2025), pp. 55.1-55.10. [10.1038/s41467-024-54857-z]

Experimental identification of topological defects in 2D colloidal glass

V. Vaibhav
Primo
;
A. Bera
Secondo
;
A. Zaccone
Ultimo
2025

Abstract

Topological defects are singularities within a field that cannot be removed by continuous transformations. The definition of these irregularities requires an ordered reference configuration, calling into question whether they exist in disordered materials, such as glasses. However, recent work suggests that well-defined topological defects emerge in the dynamics of glasses, even if they are not evident in the static configuration. In this study, we reveal the presence of topological defects in the vibrational eigenspace of a two-dimensional experimental colloidal glass. These defects strongly correlate with the vibrational features and spatially correlate with each other and structural "soft spots", more prone to plastic flow. This work experimentally confirms the existence of topological defects in disordered systems revealing the complex interplay between topology, disorder, and dynamics.
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
2025
2-gen-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
Vaibhav_et_al-2025-Nature_Communications.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 4.22 MB
Formato Adobe PDF
4.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1129456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact