We report the serendipitous discovery of a faint (MUV > -12:2), low-metallicity (_Azip ∼0.02 Z) ionizing source, dubbed T2c, with a spectroscopic redshift of z = 6.146. T2c is part of a larger structure amplified by the Hubble Frontier Field galaxy cluster MACSJ0416 and was observed with the James Webb Space Telescope (JWST) NIRSpec integral field unit. Stacking the short-wavelength NIRCam data reveals no stellar continuum detection down to a magnitude limit of mUV ' 31:0 (3σ). However, prominent H [Oiii λ λ λ4959; 5007, and Hemissions are detected, with equivalent widths exceeding 200 Å, 800 Å, and 1300Å (3σ), respectively. The corresponding intrinsic (magnification-corrected ×23±3) ultraviolet and optical rest-frame magnitudes exceed 34.4 and 33.9 (corresponding to MUV and Mopt fainter than -12.2 and -12.8 at rest2000Å and ∼5000 Å, respectively), suggesting a stellar mass lower than a few 104 M under an instantaneous burst scenario. The inferred ionizing photon production effciency (ζion) is high: ζion & 26:08(25:86) 3(5)σ, assuming no dust attenuation and no Lyman continuum leakage. This indicates the presence of massive stars despite the low mass of the object. The very poor sampling of the initial mass function in such a low-mass star-forming complex suggests that the formation of very massive stars might be favored in very low-metallicity environments. T2c is surrounded by Balmer and weak oxygen emission on a spatial scale of a few hundred parsecs, after correcting for lensing effects. This system resembles a Hii region potentially powered by currently undetected, extremely effcient, low-metallicity star complexes or clusters. We propose that massive O-type stars populate these low-mass, low-metallicity, high-redshift satellites, likely observed in an early and short formation phase, and contribute to the ionization of the surrounding medium

Extreme ionizing properties of a metal-poor, MUV ≃ −12 star complex in the first gigayear / E. Vanzella, F. Loiacono, M. Messa, M. Castellano, P. Bergamini, A. Zanella, F. Annibali, B. Sun, M. Dickinson, A. Adamo, F. Calura, M. Ricotti, P. Rosati, M. Meneghetti, C. Grillo, M. Bradač, C.J. Conselice, H. Yan, A. Bolamperti, U. Meštrić, R. Gilli, M. Gronke, C. Willott, E. Sani, A. Acebron, A. Comastri, M. Mignoli, C. Gruppioni, A. Mercurio, V. Strait, R. Pascale, M. Annunziatella, B.L. Frye, L.D. Bradley, N.A. Grogin, A.M. Koekemoer, S. Ravindranath, J.C.J. D'Silva, J. Summers, G. Rihtaršič, R. Windhorst. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 691:(2024 Nov), pp. A251.1-A251.8. [10.1051/0004-6361/202451696]

Extreme ionizing properties of a metal-poor, MUV ≃ −12 star complex in the first gigayear

P. Bergamini;C. Grillo;
2024

Abstract

We report the serendipitous discovery of a faint (MUV > -12:2), low-metallicity (_Azip ∼0.02 Z) ionizing source, dubbed T2c, with a spectroscopic redshift of z = 6.146. T2c is part of a larger structure amplified by the Hubble Frontier Field galaxy cluster MACSJ0416 and was observed with the James Webb Space Telescope (JWST) NIRSpec integral field unit. Stacking the short-wavelength NIRCam data reveals no stellar continuum detection down to a magnitude limit of mUV ' 31:0 (3σ). However, prominent H [Oiii λ λ λ4959; 5007, and Hemissions are detected, with equivalent widths exceeding 200 Å, 800 Å, and 1300Å (3σ), respectively. The corresponding intrinsic (magnification-corrected ×23±3) ultraviolet and optical rest-frame magnitudes exceed 34.4 and 33.9 (corresponding to MUV and Mopt fainter than -12.2 and -12.8 at rest2000Å and ∼5000 Å, respectively), suggesting a stellar mass lower than a few 104 M under an instantaneous burst scenario. The inferred ionizing photon production effciency (ζion) is high: ζion & 26:08(25:86) 3(5)σ, assuming no dust attenuation and no Lyman continuum leakage. This indicates the presence of massive stars despite the low mass of the object. The very poor sampling of the initial mass function in such a low-mass star-forming complex suggests that the formation of very massive stars might be favored in very low-metallicity environments. T2c is surrounded by Balmer and weak oxygen emission on a spatial scale of a few hundred parsecs, after correcting for lensing effects. This system resembles a Hii region potentially powered by currently undetected, extremely effcient, low-metallicity star complexes or clusters. We propose that massive O-type stars populate these low-mass, low-metallicity, high-redshift satellites, likely observed in an early and short formation phase, and contribute to the ionization of the surrounding medium
Galaxies: high-redshift; Galaxies: star clusters: general; Galaxies: star formation; Gravitational lensing: strong; HII regions;
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
   GRAvitational lensing in galaxy clusters next-generation proposAL
   GRAAL
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2020SKSTHZ_001

   Zooming into Dark Matter and proto-galaxies with massive lensing clusters
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017WSCC32_002
nov-2024
19-nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa51696-24.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 9.87 MB
Formato Adobe PDF
9.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1127208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact