We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host-galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z ≈ 0.5. We present relative SN rates from YSE's magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNe Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.

The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae / P.D. Aleo, K. Malanchev, S. Sharief, D.O. Jones, G. Narayan, R.J. Foley, V.A. Villar, C.R. Angus, V.F. Baldassare, M.J. Bustamante-Rosell, D. Chatterjee, C. Cold, D.A. Coulter, K.W. Davis, S. Dhawan, M.R. Drout, A. Engel, K.D. French, A. Gagliano, C. Gall, J. Hjorth, M.E. Huber, W.V. Jacobson-Galán, C.D. Kilpatrick, D. Langeroodi, P. Macias, K.S. Mandel, R. Margutti, F. Matasić, P. Mcgill, J.D.R. Pierel, E. Ramirez-Ruiz, C.L. Ransome, C. Rojas-Bravo, M.R. Siebert, K.W. Smith, K.M. de Soto, M.C. Stroh, S. Tinyanont, K. Taggart, S.M. Ward, R. Wojtak, K. Auchettl, P.K. Blanchard, T.J.L. de Boer, B.M. Boyd, C.M. Carroll, K.C. Chambers, L. Demarchi, G. Dimitriadis, S.A. Dodd, N. Earl, D. Farias, H. Gao, S. Gomez, M. Grayling, C. Grillo, E.E. Hayes, T. Hung, L. Izzo, N. Khetan, A.N. Kolborg, J.A.P. Law-Smith, N. Lebaron, C.-. Lin, Y. Luo, E.A. Magnier, D. Matthews, B. Mockler, A.J.G. O'Grady, Y.-. Pan, C.A. Politsch, S.I. Raimundo, A. Rest, R. Ridden-Harper, A. Sarangi, S.L. Schrøder, S.J. Smartt, G. Terreran, S. Thorp, J. Vazquez, R.J. Wainscoat, Q. Wang, A.R. Wasserman, S.K. Yadavalli, R. Yarza, Y. Zenati, N. Null. - In: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES. - ISSN 0067-0049. - 266:1(2023 May 02), pp. 9.1-9.46. [10.3847/1538-4365/acbfba]

The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae

C. Grillo;
2023

Abstract

We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host-galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z ≈ 0.5. We present relative SN rates from YSE's magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNe Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
   Next-Generation Data-Driven Probabilistic Modelling of Type Ia Supernova SEDs in the Optical to Near-Infrared for Robust Cosmological Inference
   BayeSN
   European Commission
   Horizon 2020 Framework Programme
   101002652

   Development of Novel Statistical Tools for the Analysis of Astronomical Data
   ASTROSTAT-II
   European Commission
   Horizon 2020 Framework Programme
   873089

   GRAvitational lensing in galaxy clusters next-generation proposAL
   GRAAL
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2020SKSTHZ_001

   Black hole growth fuelled by counter-rotating gas
   CR-GAS
   European Commission
   Horizon 2020 Framework Programme
   891744
2-mag-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Aleo_2023_ApJS_266_9.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 7.21 MB
Formato Adobe PDF
7.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1127137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
  • OpenAlex ND
social impact