We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.

Extracellular transglutaminase-2, nude or associated with astrocytic extracellular vesicles, modulates neuronal calcium homeostasis / E. Tonoli, I. Verduci, M. Gabrielli, I. Prada, G. Forcaia, C. Coveney, M.P. Savoca, D.J. Boocock, G. Sancini, M. Mazzanti, C. Verderio, E.A.M. Verderio. - In: PROGRESS IN NEUROBIOLOGY. - ISSN 0301-0082. - 216:(2022 Sep), pp. 102313.1-102313.17. [10.1016/j.pneurobio.2022.102313]

Extracellular transglutaminase-2, nude or associated with astrocytic extracellular vesicles, modulates neuronal calcium homeostasis

M. Mazzanti;
2022

Abstract

We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.
Astrocytes; Calcium homeostasis; Extracellular vesicles; Hippocampal neurons; Transglutaminase-2
Settore BIOS-06/A - Fisiologia
set-2022
26-giu-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301008222000995-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.93 MB
Formato Adobe PDF
6.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1125276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact