Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions / M.B. Stefanello, G.A. Degrazia, L. Mortarini, L. Buligon, S. Maldaner, J.C. Carvalho, O.C. Acevedo, L.G.N. Martins, D. Anfossi, C. Buriol, D. Roberti. - In: PHYSICA. A. - ISSN 0378-4371. - 492:(2018 Feb), pp. 1007-1015. [10.1016/J.PHYSA.2017.11.031]

Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

L. Mortarini;
2018

Abstract

Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.
Lagrangian stochastic model; passive scalar dispersion; horizontal wind meandering; submeso; stable boundary layer
Settore GEOS-04/C - Oceanografia, meteorologia e climatologia
Settore PHYS-05/B - Fisica del sistema Terra, dei pianeti, dello spazio e del clima
feb-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378437117311044-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
44_Stefanello_et_al_PA_2017.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1123971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact