In this study we analyze natural complex signals employing the Hilbert–Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert–Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.

Employing the Hilbert–Huang Transform to analyze observed natural complex signals: Calm wind meandering cases / L.G.N. Martins, M.B. Stefanello, G.A. Degrazia, O.C. Acevedo, F.S. Puhales, G. Demarco, L. Mortarini, D. Anfossi, D.R. Roberti, F.C. Denardin, S. Maldaner. - In: PHYSICA. A. - ISSN 0378-4371. - 462:(2016 Nov 15), pp. 1189-1196. [10.1016/j.physa.2016.06.147]

Employing the Hilbert–Huang Transform to analyze observed natural complex signals: Calm wind meandering cases

L. Mortarini
Conceptualization
;
2016

Abstract

In this study we analyze natural complex signals employing the Hilbert–Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert–Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.
natural complex signals; wind meandering; Hilbert–Huang Transform; low-wind; stable boundary layer
Settore GEOS-04/C - Oceanografia, meteorologia e climatologia
Settore PHYS-05/B - Fisica del sistema Terra, dei pianeti, dello spazio e del clima
15-nov-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
39_Martins_et_al_PA_2016.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 935.57 kB
Formato Adobe PDF
935.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1123781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact