Many online decision-making problems correspond to maximizing a sequence of submodular functions. In this work, we introduce sum-max functions, a subclass of monotone submodular functions capturing several interesting problems, including best-of-$K$-bandits, combinatorial bandits, and the bandit versions on $M$-medians and hitting sets. We show that all functions in this class satisfy a key property that we call pseudo-concavity. This allows us to prove $\big(1 - \frac{1}{e}\big)$-regret bounds for bandit feedback in the nonstochastic setting of the order of $\sqrt{MKT}$ (ignoring log factors), where $T$ is the time horizon and $M$ is a cardinality constraint. This bound, attained by a simple and efficient algorithm, significantly improves on the $\widetilde{\mathcal{O}}\big(T^{2/3}\big)$ regret bound for online monotone submodular maximization with bandit feedback. We also extend our results to a bandit version of the facility location problem.

Sum-max Submodular Bandits / S. Pasteris, A. Rumi, F. Vitale, N. Cesa Bianchi (PROCEEDINGS OF MACHINE LEARNING RESEARCH). - In: Proceedings of The 27th International Conference on Artificial Intelligence and Statistics / [a cura di] S. Dasgupta, S. Mandt, Y. Li. - [s.l] : ML Research Press, 2024. - pp. 2323-2331 (( Intervento presentato al 27. convegno International Conference on Artificial Intelligence and Statistics tenutosi a Valencia nel 2024.

Sum-max Submodular Bandits

A. Rumi;N. Cesa Bianchi
2024

Abstract

Many online decision-making problems correspond to maximizing a sequence of submodular functions. In this work, we introduce sum-max functions, a subclass of monotone submodular functions capturing several interesting problems, including best-of-$K$-bandits, combinatorial bandits, and the bandit versions on $M$-medians and hitting sets. We show that all functions in this class satisfy a key property that we call pseudo-concavity. This allows us to prove $\big(1 - \frac{1}{e}\big)$-regret bounds for bandit feedback in the nonstochastic setting of the order of $\sqrt{MKT}$ (ignoring log factors), where $T$ is the time horizon and $M$ is a cardinality constraint. This bound, attained by a simple and efficient algorithm, significantly improves on the $\widetilde{\mathcal{O}}\big(T^{2/3}\big)$ regret bound for online monotone submodular maximization with bandit feedback. We also extend our results to a bandit version of the facility location problem.
Settore INFO-01/A - Informatica
   Algorithms, Games, and Digital Markets (ALGADIMAR)
   ALGADIMAR
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017R9FHSR_006

   European Lighthouse of AI for Sustainability (ELIAS)
   ELIAS
   EUROPEAN COMMISSION
   101120237
2024
https://proceedings.mlr.press/v238/pasteris24a.html
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
pasteris24a.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 19.67 MB
Formato Adobe PDF
19.67 MB Adobe PDF Visualizza/Apri
SumMax-Compressed.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1122767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact