n this paper, we present the ASKE (Automated System for Knowledge Extraction) approach to legal knowledge extraction, based on a combination of context-aware embedding models and zero-shot learning techniques into a three-phase extraction cycle, which is executed a number of times to progressively extract concepts representative of the different meanings of terminology used in legal documents chunks. We show ASKE in action in a case study of legal knowledge extraction from a real corpus of case law decisions in the framework of the NGUPP project.

Automated Knowledge Extraction from Legal Texts using ASKE / S. Castano, A. Ferrara, S. Montanelli, S. Picascia, D. Riva (CEUR WORKSHOP PROCEEDINGS). - In: SEBD 2024 : Symposium on Advanced Database Systems 2024 / [a cura di] M. Atzori, P. Ciaccia, M. Ceci, F. Mandreoli, D. Malerba, M. Sanguinetti, A. Pellicani, F. Motta. - [s.l] : CEUR, 2024. - pp. 446-455 (( Intervento presentato al 32. convegno Symposium on Advanced Database Systems tenutosi a Villasimius nel 2024.

Automated Knowledge Extraction from Legal Texts using ASKE

S. Castano
Primo
;
A. Ferrara
Secondo
;
S. Montanelli;S. Picascia
Penultimo
;
D. Riva
Ultimo
2024

Abstract

n this paper, we present the ASKE (Automated System for Knowledge Extraction) approach to legal knowledge extraction, based on a combination of context-aware embedding models and zero-shot learning techniques into a three-phase extraction cycle, which is executed a number of times to progressively extract concepts representative of the different meanings of terminology used in legal documents chunks. We show ASKE in action in a case study of legal knowledge extraction from a real corpus of case law decisions in the framework of the NGUPP project.
Legal Knowledge Extraction; Natural Language Processing; Digital Justice
Settore INFO-01/A - Informatica
2024
https://sebd2024.unica.it/papers/paper37.pdf
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
2024 - SEBD.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 617.36 kB
Formato Adobe PDF
617.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1122334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact