A quantitative theory of the superconductivity of materials confined at the nanoscale in parameter-free agreement with experimental data has been missing so far. We present a generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good metals which are confined along one of the three spatial directions, such as thin films. In this formulation of the Eliashberg equations the approximation of taking the normal density of states as its value at the Fermi level has been removed. By numerically solving these new Eliashberg-type equations, we find the dependence of the superconducting critical temperatureTcon the confinement sizeL, in quantitative agreement with experimental data of Pb and Al thin films with no adjustable parameters. This quantitative agreement provides an indirect confirmation that, upon increasing the confinement, a crossover from a spherical-like Fermi surface, which contains two growing hole pockets caused by the confinement, to a strongly deformed Fermi surface, occurs. This topology of the Fermi sea is implemented in the new Eliashberg-type equations to reproduce the experimentally observed maximum in the critical superconducting temperature vs film thickness of ultra-thin Pb films.

Quantitative Eliashberg theory of the superconductivity of thin films / G.A. Ummarino, A. Zaccone. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 37:6(2024 Nov 22), pp. 1-8. [10.1088/1361-648x/ad92ed]

Quantitative Eliashberg theory of the superconductivity of thin films

A. Zaccone
2024

Abstract

A quantitative theory of the superconductivity of materials confined at the nanoscale in parameter-free agreement with experimental data has been missing so far. We present a generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good metals which are confined along one of the three spatial directions, such as thin films. In this formulation of the Eliashberg equations the approximation of taking the normal density of states as its value at the Fermi level has been removed. By numerically solving these new Eliashberg-type equations, we find the dependence of the superconducting critical temperatureTcon the confinement sizeL, in quantitative agreement with experimental data of Pb and Al thin films with no adjustable parameters. This quantitative agreement provides an indirect confirmation that, upon increasing the confinement, a crossover from a spherical-like Fermi surface, which contains two growing hole pockets caused by the confinement, to a strongly deformed Fermi surface, occurs. This topology of the Fermi sea is implemented in the new Eliashberg-type equations to reproduce the experimentally observed maximum in the critical superconducting temperature vs film thickness of ultra-thin Pb films.
Eliashberg theory; electron–phonon; elemental metals; superconductivity; thin films;
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
   Solving the multi-scale problem in materials mechanics: a pathway to chemical design (Multimech)
   Multimech
   EUROPEAN COMMISSION
   101043968
22-nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ummarino_2025_J._Phys.__Condens._Matter_37_065703.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 722.55 kB
Formato Adobe PDF
722.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1121835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact