The Po Valley in northern Italy is a hotspot for tornadoes in Europe in spite of being surrounded by two mountain ridges: the Alps in the north and the Apennines in the southwest. The research focuses on the case study of 19 September 2021, when seven tornadoes (four of them rated as F2) developed in the Po Valley in a few hours. The event was analyzed using observations and numerical simulations with the convection-permitting Modello Locale in Hybrid Coordinates (MOLOCH) model. Observations show that during the event in the Po Valley, there were two surface boundaries that created a triple point: an outflow boundary generated by convection triggered in the Alpine foothills and a dry-line generated by downslope winds from the Apennines, while warm and moist air advected westward from the Adriatic Sea east (ahead) of the boundaries. Tornadoes developed about 20 km northeast of the triple point. Numerical simulations with 500-m grid spacing suggest that the development of supercells and drylines in the Po Valley was sensitive to the elevation of the Apennines. Simulated vertical profiles show that the best combination of instability and wind shear for the de- velopment of tornadoes was attained within a narrow area located ahead of the dryline. A conceptual model for the development of tornadoes in the Po Valley is proposed, and the differences between tornado environments over a flat terrain and over a region with complex terrain are discussed.

A conceptual model for the development of tornado in the Po Valley  / F. De Martin, S. Davolio, M. Marcello Miglietta, V. Levizzani. - In: MONTHLY WEATHER REVIEW. - ISSN 0027-0644. - 152:6(2024 Jun), pp. 1357-1377. [10.1175/MWR-D-23-0222.1]

A conceptual model for the development of tornado in the Po Valley 

S. Davolio
Co-primo
;
2024

Abstract

The Po Valley in northern Italy is a hotspot for tornadoes in Europe in spite of being surrounded by two mountain ridges: the Alps in the north and the Apennines in the southwest. The research focuses on the case study of 19 September 2021, when seven tornadoes (four of them rated as F2) developed in the Po Valley in a few hours. The event was analyzed using observations and numerical simulations with the convection-permitting Modello Locale in Hybrid Coordinates (MOLOCH) model. Observations show that during the event in the Po Valley, there were two surface boundaries that created a triple point: an outflow boundary generated by convection triggered in the Alpine foothills and a dry-line generated by downslope winds from the Apennines, while warm and moist air advected westward from the Adriatic Sea east (ahead) of the boundaries. Tornadoes developed about 20 km northeast of the triple point. Numerical simulations with 500-m grid spacing suggest that the development of supercells and drylines in the Po Valley was sensitive to the elevation of the Apennines. Simulated vertical profiles show that the best combination of instability and wind shear for the de- velopment of tornadoes was attained within a narrow area located ahead of the dryline. A conceptual model for the development of tornadoes in the Po Valley is proposed, and the differences between tornado environments over a flat terrain and over a region with complex terrain are discussed.
Complex terrain; Tornadogenesis; Drylines; Severe storms; Mesoscale processes; Numerical analysis/modeling;
Settore GEOS-04/C - Oceanografia, meteorologia e climatologia
Settore PHYS-05/B - Fisica del sistema Terra, dei pianeti, dello spazio e del clima
giu-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
2024-MonWeaRev-DeMartin_etal_compressed.pdf

accesso aperto

Descrizione: paper
Tipologia: Publisher's version/PDF
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1121725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact