Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.

The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo / K.-. Park, G. Eun Kim, R. Morales, F. Moda, I. Moreno-Gonzalez, L. Concha-Marambio, A.S. Lee, C. Hetz, C. Soto. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 7:(2017 Mar 23), pp. 44723.1-44723.13. [10.1038/srep44723]

The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo

F. Moda;
2017

Abstract

Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.
Settore BIOS-07/A - Biochimica
Settore BIOS-08/A - Biologia molecolare
Settore BIOS-09/A - Biochimica clinica e biologia molecolare clinica
Settore BIOS-10/A - Biologia cellulare e applicata
23-mar-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
srep44723-1.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1120944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 88
  • OpenAlex ND
social impact