We connect Priestley duality for distributive lattices and its generalization to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices. Among other things, this involves consideration of various morphisms between algebraic frames. We also show how Stone duality for boolean algebras and generalized boolean algebras fits as a particular case of the general picture we develop.

Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality / G. Bezhanishvili, L. Carai, P.J. Morandi. - In: THEORY AND APPLICATIONS OF CATEGORIES. - ISSN 1201-561X. - 41:(2024 Nov 21), pp. 54.1937-54.1982.

Connecting generalized Priestley duality to Hofmann-Mislove-Stralka duality

L. Carai
;
2024

Abstract

We connect Priestley duality for distributive lattices and its generalization to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices. Among other things, this involves consideration of various morphisms between algebraic frames. We also show how Stone duality for boolean algebras and generalized boolean algebras fits as a particular case of the general picture we develop.
algebraic frame; algebraic lattice; coherent frame; Priestley duality; semilattice; Stone duality;
Settore MATH-01/A - Logica matematica
21-nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
41-54.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 772.02 kB
Formato Adobe PDF
772.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1119740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact