Objectives: To investigate the cytotoxicity on human dental pulp cells (HDPCs) and Streptococcus mutans (S.mutans) biofilm formation on universal resin composite cements (UCs). Methods: Three UCs (RelyX Universal, 3 M Oral Care - RXU; Panavia SA Cement Universal, Kuraray Noritake - PSAU; SoloCem, Coltene - SCM) and one 'gold-standard' multi-step cement (Panavia V5, Kuraray Noritake - PV5) were used following two polymerization protocols (light-cured - LC; self-cured - SC). Cytotoxicity (MTT) tests were performed after 1, 3 and 7 days of direct contact. Carboxy-2',7'-dichlorodihydrofluorescein diacetate was used to detect the release of reactive oxygen species (ROS), and interleukin 6 (IL-6) expression was analyzed by IL-6 proquantum high sensitivity immunoassay. S. mutans biofilms were grown on UCs samples in a bioreactor for 24 h, then adherent viable biomass was assessed using MTT assay. For microbiological procedures, half of UCs samples underwent accelerated aging. Data were statistically analyzed (α = 0.05). Results: The highest cytotoxicity was observed for PSAU SC, RXU SC, and PV5 SC at day 1, then for SC RXU after 3 days, and SC PSAU, LC PV5 and SCM after 1-week (p < 0.05). There was no increase in IL-6 expression after 1 day, while it increased depending on the group at 3 and 7 days. The highest ROS expression after 12 h was recorded for PSAU SC, PV5 SC and PV5 LC. Biofilm formation was as follows: RXU > > PSAU = PV5 > SCM, while light-curing systematically decreased biofilm formation (≈-33 %). Aging leveled out differences between UCs and between polymerization protocols. Significance: The choice of cement brand, rather than category, and polymerization protocol influence cell viability and microbiological behavior. Light-curing is beneficial for reducing the harmful pulpal effect that UCs may possess.

Cytotoxicity and microbiological behavior of universal resin composite cements / U. Josic, G. Teti, A. Ionescu, T. Maravic, C. Mazzitelli, S. Cokic, B. Van Meerbeek, M. Falconi, E. Brambilla, A. Mazzoni, L. Breschi. - In: DENTAL MATERIALS. - ISSN 0109-5641. - 40:10(2024), pp. 1515-1523. [10.1016/j.dental.2024.07.004]

Cytotoxicity and microbiological behavior of universal resin composite cements

A. Ionescu;E. Brambilla
Penultimo
;
2024

Abstract

Objectives: To investigate the cytotoxicity on human dental pulp cells (HDPCs) and Streptococcus mutans (S.mutans) biofilm formation on universal resin composite cements (UCs). Methods: Three UCs (RelyX Universal, 3 M Oral Care - RXU; Panavia SA Cement Universal, Kuraray Noritake - PSAU; SoloCem, Coltene - SCM) and one 'gold-standard' multi-step cement (Panavia V5, Kuraray Noritake - PV5) were used following two polymerization protocols (light-cured - LC; self-cured - SC). Cytotoxicity (MTT) tests were performed after 1, 3 and 7 days of direct contact. Carboxy-2',7'-dichlorodihydrofluorescein diacetate was used to detect the release of reactive oxygen species (ROS), and interleukin 6 (IL-6) expression was analyzed by IL-6 proquantum high sensitivity immunoassay. S. mutans biofilms were grown on UCs samples in a bioreactor for 24 h, then adherent viable biomass was assessed using MTT assay. For microbiological procedures, half of UCs samples underwent accelerated aging. Data were statistically analyzed (α = 0.05). Results: The highest cytotoxicity was observed for PSAU SC, RXU SC, and PV5 SC at day 1, then for SC RXU after 3 days, and SC PSAU, LC PV5 and SCM after 1-week (p < 0.05). There was no increase in IL-6 expression after 1 day, while it increased depending on the group at 3 and 7 days. The highest ROS expression after 12 h was recorded for PSAU SC, PV5 SC and PV5 LC. Biofilm formation was as follows: RXU > > PSAU = PV5 > SCM, while light-curing systematically decreased biofilm formation (≈-33 %). Aging leveled out differences between UCs and between polymerization protocols. Significance: The choice of cement brand, rather than category, and polymerization protocol influence cell viability and microbiological behavior. Light-curing is beneficial for reducing the harmful pulpal effect that UCs may possess.
Biofilm formation; Bioreactor; Cytokines; Cytotoxicity; Polymerization; Universal resin cements
Settore MEDS-16/A - Malattie odontostomatologiche
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0109564124002057-main.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1119484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact