Let Y be a smooth complex projective variety of dimension n ≥ 2 endowed with a finite morphism φ : Y → P^n of degree 3, and suppose that Y , polarized by some ample line bundle, is a scroll over a smooth variety X of dimension m. Then n ≤ 3 and either m = 1 or 2. When m = 1, a complete description of the few varieties Y satisfying these conditions is provided. When m = 2, various restrictions are discussed showing that in several instances the possibilities for such a Y reduce to the single case of the Segre product P^2 × P^1. This happens, in particular, if Y is a Fano threefold as well as if the base surface X is P^2. .

Triple solids and scrolls / A. Lanteri, C. Novelli. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - 73:6(2024), pp. 2257-2275. [10.1007/s12215-024-01020-8]

Triple solids and scrolls

A. Lanteri
Primo
;
2024

Abstract

Let Y be a smooth complex projective variety of dimension n ≥ 2 endowed with a finite morphism φ : Y → P^n of degree 3, and suppose that Y , polarized by some ample line bundle, is a scroll over a smooth variety X of dimension m. Then n ≤ 3 and either m = 1 or 2. When m = 1, a complete description of the few varieties Y satisfying these conditions is provided. When m = 2, various restrictions are discussed showing that in several instances the possibilities for such a Y reduce to the single case of the Segre product P^2 × P^1. This happens, in particular, if Y is a Fano threefold as well as if the base surface X is P^2. .
triple cover; scroll; vector bundle; adjunction;
Settore MATH-02/B - Geometria
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
triple_solids_La_No.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 23.69 MB
Formato Adobe PDF
23.69 MB Adobe PDF Visualizza/Apri
s12215-024-01020-8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 417.71 kB
Formato Adobe PDF
417.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1119460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact