The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.

Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise / J. Bonjour, A. Bringard, G. Antonutto, C. Capelli, D. Linnarsson, D.R. Pendergast, G. Ferretti. - In: EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 1439-6319. - 111:12(2011), pp. 2907-2917. [10.1007/s00421-011-1917-0]

Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise

C. Capelli;
2011

Abstract

The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.
arterial blood pressure; cardiac output; heart rate; hypergravity; microgravity; oxygen consumption
Settore BIOS-06/A - Fisiologia
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bonjour_et_al_2011.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 423.31 kB
Formato Adobe PDF
423.31 kB Adobe PDF Visualizza/Apri
s00421-011-1917-0.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1117651
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact