A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF3 and KNiF3, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF3 and KNiF3 in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K2CuF4 and K2NiF4 were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.

Mechanochemical synthesis of fluorinated perovskites KCuF and KNiF3 / D. Ceriotti, P. Marziani, F.M. Scesa, A. Collorà, C.L. Bianchi, L. Magagnin, M. Sansotera. - In: RSC MECHANOCHEMISTRY. - ISSN 2976-8683. - 1:5(2024), pp. 520-530. [10.1039/d4mr00037d]

Mechanochemical synthesis of fluorinated perovskites KCuF and KNiF3

C.L. Bianchi
Conceptualization
;
2024

Abstract

A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF3 and KNiF3, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF3 and KNiF3 in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K2CuF4 and K2NiF4 were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.
Fluorinated perovskite; mechanichemistry; KCuF; KNiF3
Settore CHEM-04/A - Chimica industriale
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
286_RSC Mechanochemistry_Sansotera 2024.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1117208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 2
social impact