High-fat diet (HFD) consumption and excess nutrient availability can cause alterations in mitochondrial function and dynamics. We previously showed that anthocyanins (AC) decreased HFD-induced body weight gain and fat deposition. This study investigated: i) the capacity of AC to mitigate HFD-induced alterations in mitochondrial dynamics, biogenesis, and thermogenesis in mouse subcutaneous white adipose tissue (sWAT), and ii) the underlying mechanisms of action of cyanidin-3-O-glucoside (C3G), delphinidin-3-O-glucoside (D3G), and their gut metabolites on mitochondria function/dynamics in 3T3-L1 adipocytes treated with palmitate. Mice were fed control or HFD diets, added or not with 40 mg AC/kg body weight (BW). Compared to control and AC-supplemented mice, HFD-fed mice had fewer sWAT mitochondria that presented alterations of their architecture. AC supplementation prevented HFD-induced decrease of proteins involved in mitochondria biogenesis (PPARγ, PRDM16 and PGC-1α), and thermogenesis (UCP-1), and decreased AMPK phosphorylation. AC supplementation also restored the alterations in sWAT mitochondrial dynamics (Drp-1, OPA1, MNF-2, and Fis-1) and mitophagy (BNIP3L/NIX) caused by HFD consumption. In mature 3T3-L1, C3G, D3G, and their metabolites protocatechuic acid (PCA), 4-hydroxybenzaldehyde (HB), and gallic acid (GA) differentially affected palmitate-mediated decreased cAMP, PKA, AMPK, and SIRT-1 signaling pathways. C3G, D3G, and metabolites also prevented palmitate-mediated decreased expression of PPARγ, PRDM16, PGC-1α, and UCP1. Results suggest that consumption of select AC, i.e. cyanidin and delphinidin, could promote sWAT mitochondriogenesis and improve mitochondria dynamics in the context of HFD/obesity-induced dysmetabolism in part by regulating PKA, AMPK, and SIRT-1 signaling pathways.
Anthocyanins and their metabolites promote white adipose tissue beiging by regulating mitochondria thermogenesis and dynamics / E. Cremonini, L.M.E. Da Silva, C.R. Lanzi, M. Marino, D.E. Iglesias, P.I. Oteiza. - In: BIOCHEMICAL PHARMACOLOGY. - ISSN 0006-2952. - 222:(2024), pp. 116069.1-116069.14. [10.1016/j.bcp.2024.116069]
Anthocyanins and their metabolites promote white adipose tissue beiging by regulating mitochondria thermogenesis and dynamics
M. Marino;
2024
Abstract
High-fat diet (HFD) consumption and excess nutrient availability can cause alterations in mitochondrial function and dynamics. We previously showed that anthocyanins (AC) decreased HFD-induced body weight gain and fat deposition. This study investigated: i) the capacity of AC to mitigate HFD-induced alterations in mitochondrial dynamics, biogenesis, and thermogenesis in mouse subcutaneous white adipose tissue (sWAT), and ii) the underlying mechanisms of action of cyanidin-3-O-glucoside (C3G), delphinidin-3-O-glucoside (D3G), and their gut metabolites on mitochondria function/dynamics in 3T3-L1 adipocytes treated with palmitate. Mice were fed control or HFD diets, added or not with 40 mg AC/kg body weight (BW). Compared to control and AC-supplemented mice, HFD-fed mice had fewer sWAT mitochondria that presented alterations of their architecture. AC supplementation prevented HFD-induced decrease of proteins involved in mitochondria biogenesis (PPARγ, PRDM16 and PGC-1α), and thermogenesis (UCP-1), and decreased AMPK phosphorylation. AC supplementation also restored the alterations in sWAT mitochondrial dynamics (Drp-1, OPA1, MNF-2, and Fis-1) and mitophagy (BNIP3L/NIX) caused by HFD consumption. In mature 3T3-L1, C3G, D3G, and their metabolites protocatechuic acid (PCA), 4-hydroxybenzaldehyde (HB), and gallic acid (GA) differentially affected palmitate-mediated decreased cAMP, PKA, AMPK, and SIRT-1 signaling pathways. C3G, D3G, and metabolites also prevented palmitate-mediated decreased expression of PPARγ, PRDM16, PGC-1α, and UCP1. Results suggest that consumption of select AC, i.e. cyanidin and delphinidin, could promote sWAT mitochondriogenesis and improve mitochondria dynamics in the context of HFD/obesity-induced dysmetabolism in part by regulating PKA, AMPK, and SIRT-1 signaling pathways.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0006295224000522-main_(1).pdf
accesso riservato
Descrizione: Versione dell'editore
Tipologia:
Publisher's version/PDF
Dimensione
917.3 kB
Formato
Adobe PDF
|
917.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.