Let A be a homological category and U: B → A be a faithful conservative right adjoint. We introduce the notion of relative ideal with respect to U and show that, under suitable conditions, any object of A can be seen as a relative ideal of some object in B. We then develop a case study: we first prove that the category of hoops is semi-abelian and that the category of MV-algebras is protomodular; then we apply our results to the forgetful functor from the category of MV-algebras to the category of Wajsberg hoops.

Relative ideals in homological categories with an application to MV-algebras / S. Lapenta, G. Metere, L. Spada. - In: THEORY AND APPLICATIONS OF CATEGORIES. - ISSN 1201-561X. - 41:(2024), pp. 27.878-27.893.

Relative ideals in homological categories with an application to MV-algebras

G. Metere;
2024

Abstract

Let A be a homological category and U: B → A be a faithful conservative right adjoint. We introduce the notion of relative ideal with respect to U and show that, under suitable conditions, any object of A can be seen as a relative ideal of some object in B. We then develop a case study: we first prove that the category of hoops is semi-abelian and that the category of MV-algebras is protomodular; then we apply our results to the forgetful functor from the category of MV-algebras to the category of Wajsberg hoops.
0-ideals; augmentation ideal; MV-algebras; protomodular categories; relative ideal; semiabelian categories; unitalization;
Settore MATH-02/A - Algebra
2024
http://www.tac.mta.ca/tac/volumes/41/27/41-27abs.html
Article (author)
File in questo prodotto:
File Dimensione Formato  
41-27 (1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 522.86 kB
Formato Adobe PDF
522.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1115887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact