Accurate segmentation of food regions is important for both food recognition and quantity estimation and any error would degrade the accuracy of the food dietary assessment system. Main goal of this work is to investigate the performance of a number of color encoding schemes and color spaces for food segmentation exploiting the JSEG algorithm. Our main outcome is that significant improvements in segmentation can be achieved with a proper color space selection and by learning the proper setting of the segmentation parameters from a training set.

On Comparing Color Spaces for Food Segmentation / S. Aslan, G. Ciocca, R. Schettini (LECTURE NOTES IN COMPUTER SCIENCE). - In: New Trends in Image Analysis and Processing – ICIAP 2017 / [a cura di] S. Battiato, G.M. Farinella, M. Leo, G. Gallo. - [s.l] : Springer, 2017. - ISBN 9783319707419. - pp. 435-443 (( Intervento presentato al 19. convegno International Conference on Image Analysis and Processing tenutosi a Catania nel 2017 [10.1007/978-3-319-70742-6_42].

On Comparing Color Spaces for Food Segmentation

S. Aslan
Primo
;
2017

Abstract

Accurate segmentation of food regions is important for both food recognition and quantity estimation and any error would degrade the accuracy of the food dietary assessment system. Main goal of this work is to investigate the performance of a number of color encoding schemes and color spaces for food segmentation exploiting the JSEG algorithm. Our main outcome is that significant improvements in segmentation can be achieved with a proper color space selection and by learning the proper setting of the segmentation parameters from a training set.
Automatic food segmentation; Color spaces; JSEG
Settore INFO-01/A - Informatica
2017
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
aslan2017_ICIAP.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 531.59 kB
Formato Adobe PDF
531.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1115750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact