Sediment management is fundamental for managing mountain watercourses and their upslope catchment. A multidisciplinary approach—not limited to the discipline of hydraulics—is necessary for investigating the alterations in sediment transport along the watercourse by detecting those reaches dominated by erosion and deposition processes, by quantifying the sediment volume change, by assessing the functionality of the existing torrent control structures, and by delimitating the riparian vegetation patches. To pursue these goals, specific continuous monitoring is essential, despite being extremely rare in mountain catchments. The present study proposed an integrated approach to determine the hydro-morphological–sedimentological–ecological state of a mountain watercourse though field- and desk-based analyses. Such an integral approach includes a rainfall–runoff model, a morphological change analysis and the application of empirical formulations for estimating peak discharge, mobilizable sediment/large wood volume and watercourse hydraulic capacity, at reach and catchment scales. The procedure was tested on the Upper Adda River catchment (North Italy). The results identified where and with what priority maintenance and monitoring activities must be carried out, considering sediment regime, torrent control structures and vegetation. This study is an example of how it is possible to enhance all existing information through successive qualitative and quantitative approximations and to concentrate new resources (human and economic) on specific gaps, for drafting a scientifically robust and practical sediment management plan.

Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment / A. Cislaghi, E. Morlotti, V.G. Sacchetti, D. Bellingeri, G.B. Bischetti. - 5:4(2024 Oct 17), pp. 1125-1151. [10.3390/geohazards5040053]

Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment

A. Cislaghi
Primo
;
E. Morlotti;G.B. Bischetti
Ultimo
2024

Abstract

Sediment management is fundamental for managing mountain watercourses and their upslope catchment. A multidisciplinary approach—not limited to the discipline of hydraulics—is necessary for investigating the alterations in sediment transport along the watercourse by detecting those reaches dominated by erosion and deposition processes, by quantifying the sediment volume change, by assessing the functionality of the existing torrent control structures, and by delimitating the riparian vegetation patches. To pursue these goals, specific continuous monitoring is essential, despite being extremely rare in mountain catchments. The present study proposed an integrated approach to determine the hydro-morphological–sedimentological–ecological state of a mountain watercourse though field- and desk-based analyses. Such an integral approach includes a rainfall–runoff model, a morphological change analysis and the application of empirical formulations for estimating peak discharge, mobilizable sediment/large wood volume and watercourse hydraulic capacity, at reach and catchment scales. The procedure was tested on the Upper Adda River catchment (North Italy). The results identified where and with what priority maintenance and monitoring activities must be carried out, considering sediment regime, torrent control structures and vegetation. This study is an example of how it is possible to enhance all existing information through successive qualitative and quantitative approximations and to concentrate new resources (human and economic) on specific gaps, for drafting a scientifically robust and practical sediment management plan.
watercourse; torrent dynamics; flood; risk management; aggradation; riparian vegetation; torrent control structures; sediment budget; rainfall–runoff model
Settore AGRI-04/A - Idraulica agraria e sistemazioni idraulico-forestali
17-ott-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cislaghi et al. - 2024 - Towards a Modern and Sustainable Sediment Manageme.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 8.51 MB
Formato Adobe PDF
8.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1115309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact