Black phosphorous (BP) is one of the important emerging two-dimensional systems. We have undertaken a structural investigation of BP in the temperature range of 320 K to 85 K using synchrotron X-ray diffraction (XRD) studies. The XRD pattern of BP is heavily influenced by the preferred orientation effects. Collection of the diffraction pattern in a standard capillary geometry with controlled capillary rotations perpendicular to the X-ray direction permitted us to provide insights to the effects of the preferred orientation. In the range of 320 K to 85 K, BP remains in the so-called “A17” orthorhombic structure. Lattice parameters show a regular shrinkage with the lowering of the temperature as expected for any elemental metallic system. Dense temperature sampling permitted us to observe a small but clear deviation from the linear behavior in of one of the in-plane lattice parameters. This temperature-dependent structural evolution seems to provide some insights into the temperature dependence of the macroscopic properties of BP such as the Hall coefficient, thermal conductivity, etc.
Unraveling the Peculiarities in the Temperature-Dependent Structural Evolution of Black Phosphorus / B. Joseph, N. Demitri, P. Lotti, A. Lausi, P. Dore. - In: CONDENSED MATTER. - ISSN 2410-3896. - 2:1(2017 Feb 20), pp. 11.1-11.9. [10.3390/condmat2010011]
Unraveling the Peculiarities in the Temperature-Dependent Structural Evolution of Black Phosphorus
P. Lotti;
2017
Abstract
Black phosphorous (BP) is one of the important emerging two-dimensional systems. We have undertaken a structural investigation of BP in the temperature range of 320 K to 85 K using synchrotron X-ray diffraction (XRD) studies. The XRD pattern of BP is heavily influenced by the preferred orientation effects. Collection of the diffraction pattern in a standard capillary geometry with controlled capillary rotations perpendicular to the X-ray direction permitted us to provide insights to the effects of the preferred orientation. In the range of 320 K to 85 K, BP remains in the so-called “A17” orthorhombic structure. Lattice parameters show a regular shrinkage with the lowering of the temperature as expected for any elemental metallic system. Dense temperature sampling permitted us to observe a small but clear deviation from the linear behavior in of one of the in-plane lattice parameters. This temperature-dependent structural evolution seems to provide some insights into the temperature dependence of the macroscopic properties of BP such as the Hall coefficient, thermal conductivity, etc.| File | Dimensione | Formato | |
|---|---|---|---|
|
condensedmatter-02-00011.pdf
accesso aperto
Descrizione: Published manuscript
Tipologia:
Publisher's version/PDF
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




