In this paper we propose a time-varying parameter (TVP) vector error correction model (VECM) with heteroskedastic disturbances. We propose tools to carry out dynamic model specification in an automatic fashion. This involves using global–local priors and postprocessing the parameters to achieve truly sparse solutions. Depending on the respective set of coefficients, we achieve this by minimizing auxiliary loss functions. Our two-step approach limits overfitting and reduces parameter estimation uncertainty. We apply this framework to modeling European electricity prices. When considering daily electricity prices for different markets jointly, our model highlights the importance of explicitly addressing cointegration and nonlinearities. In a forecasting exercise focusing on hourly prices for Germany, our approach yields competitive metrics of predictive accuracy.

Sparse time-varying parameter VECMs with an application to modeling electricity prices / N. Hauzenberger, M. Pfarrhofer, L. Rossini. - In: INTERNATIONAL JOURNAL OF FORECASTING. - ISSN 0169-2070. - (2024), pp. 1-16. [Epub ahead of print] [10.1016/j.ijforecast.2024.09.001]

Sparse time-varying parameter VECMs with an application to modeling electricity prices

L. Rossini
Ultimo
2024

Abstract

In this paper we propose a time-varying parameter (TVP) vector error correction model (VECM) with heteroskedastic disturbances. We propose tools to carry out dynamic model specification in an automatic fashion. This involves using global–local priors and postprocessing the parameters to achieve truly sparse solutions. Depending on the respective set of coefficients, we achieve this by minimizing auxiliary loss functions. Our two-step approach limits overfitting and reduces parameter estimation uncertainty. We apply this framework to modeling European electricity prices. When considering daily electricity prices for different markets jointly, our model highlights the importance of explicitly addressing cointegration and nonlinearities. In a forecasting exercise focusing on hourly prices for Germany, our approach yields competitive metrics of predictive accuracy.
Cointegration; Error correction models; Hierarchical shrinkage priors; Reduced rank regression; Sparsification
Settore ECON-05/A - Econometria
Settore STAT-01/A - Statistica
Settore STAT-02/A - Statistica economica
2024
26-set-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
19 - Hauzenberger_Pfarrhofer_Rossini_24 - Sparse time-varying parameter VECMs with an application to modeling electricity prices.pdf

accesso aperto

Descrizione: In Press, Corrected Proof
Tipologia: Publisher's version/PDF
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1114962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact