We frame dynamic persuasion in a partial observation stochastic control game with an ergodic criterion. The Receiver controls the dynamics of a multidimensional unobserved state process. Information is provided to the Receiver through a device designed by the Sender that generates the observation process. The commitment of the Sender is enforced. We develop this approach in the case where all dynamics are linear and the preferences of the Receiver are linear-quadratic. We prove a verification theorem for the existence and uniqueness of the solution of the HJB equation satisfied by the Receiver's value function. An extension to the case of persuasion of a mean field of interacting Receivers is also provided. We illustrate this approach in two applications: the provision of information to electricity consumers with a smart meter designed by an electricity producer; the information provided by carbon footprint accounting rules to companies engaged in a best-in-class emissions reduction effort. In the first application, we link the benefits of information provision to the mispricing of electricity production. In the latter, we show that when firms declare a high level of best-in-class target, the information provided by stringent accounting rules offsets the Nash equilibrium effect that leads firms to increase pollution to make their target easier to achieve.
Continuous-time persuasion by filtering / R. Aïd, O. Bonesini, G. Callegaro, L. Campi. - (2024 Oct 10). [10.48550/arXiv.2410.07735]
Continuous-time persuasion by filtering
L. Campi
2024
Abstract
We frame dynamic persuasion in a partial observation stochastic control game with an ergodic criterion. The Receiver controls the dynamics of a multidimensional unobserved state process. Information is provided to the Receiver through a device designed by the Sender that generates the observation process. The commitment of the Sender is enforced. We develop this approach in the case where all dynamics are linear and the preferences of the Receiver are linear-quadratic. We prove a verification theorem for the existence and uniqueness of the solution of the HJB equation satisfied by the Receiver's value function. An extension to the case of persuasion of a mean field of interacting Receivers is also provided. We illustrate this approach in two applications: the provision of information to electricity consumers with a smart meter designed by an electricity producer; the information provided by carbon footprint accounting rules to companies engaged in a best-in-class emissions reduction effort. In the first application, we link the benefits of information provision to the mispricing of electricity production. In the latter, we show that when firms declare a high level of best-in-class target, the information provided by stringent accounting rules offsets the Nash equilibrium effect that leads firms to increase pollution to make their target easier to achieve.File | Dimensione | Formato | |
---|---|---|---|
2410.07735v1.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
931.45 kB
Formato
Adobe PDF
|
931.45 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.