In this work, we study the convergence and performance of nonlinear solvers for the Bidomain equations after decoupling the ordinary and partial differential equations of the cardiac system. Firstly, we provide a rigorous proof of the global convergence of Quasi-Newton methods, such as BFGS, and nonlinear Conjugate-Gradient methods, such as Fletcher–Reeves, for the Bidomain system, by analyzing an auxiliary variational problem under physically reasonable hypotheses. Secondly, we compare several nonlinear Bidomain solvers in terms of execution time, robustness with respect to the data and parallel scalability. Our findings indicate that Quasi-Newton methods are the best choice for nonlinear Bidomain systems, since they exhibit faster convergence rates compared to standard Newton-Krylov methods, while maintaining robustness and scalability. Furthermore, first-order methods also demonstrate competitiveness and serve as a viable alternative, particularly for matrix-free implementations that are well-suited for GPU computing.
Robust parallel nonlinear solvers for implicit time discretizations of the Bidomain equations with staggered ionic models / N.A. Barnafi, N.M.M. Huynh, L.F. Pavarino, S. Scacchi. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - 167:(2024 Aug 01), pp. 134-149. [10.1016/j.camwa.2024.04.014]
Robust parallel nonlinear solvers for implicit time discretizations of the Bidomain equations with staggered ionic models
S. ScacchiUltimo
2024
Abstract
In this work, we study the convergence and performance of nonlinear solvers for the Bidomain equations after decoupling the ordinary and partial differential equations of the cardiac system. Firstly, we provide a rigorous proof of the global convergence of Quasi-Newton methods, such as BFGS, and nonlinear Conjugate-Gradient methods, such as Fletcher–Reeves, for the Bidomain system, by analyzing an auxiliary variational problem under physically reasonable hypotheses. Secondly, we compare several nonlinear Bidomain solvers in terms of execution time, robustness with respect to the data and parallel scalability. Our findings indicate that Quasi-Newton methods are the best choice for nonlinear Bidomain systems, since they exhibit faster convergence rates compared to standard Newton-Krylov methods, while maintaining robustness and scalability. Furthermore, first-order methods also demonstrate competitiveness and serve as a viable alternative, particularly for matrix-free implementations that are well-suited for GPU computing.File | Dimensione | Formato | |
---|---|---|---|
barnafiHPS_2024.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2209.05193v3.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.