Neutron star interiors are a fantastic laboratory for high-density physics in extreme environments. Probing this system with standard electromagnetic observations is, however, a challenging endeavor, as the radiation is only emitted by the outermost layers and is scattered by the interstellar medium. Gravitational waves, on the other hand, while challenging to detect, interact weakly with matter and are likely to carry a clean imprint of the high-density interior of the star. In particular, long-lived, i.e., “continuous” signals from isolated neutron stars can carry a signature of deformations, possibly in crystalline exotic layers of the core, or allow to study modes of oscillation, thus performing gravitational wave asteroseismology of neutron star interiors. In this article, we will review current theoretical models for continuous gravitational wave emission, and observational constraints, both electromagnetic and gravitational. Finally, we will discuss future observational possibilities.

Isolated Neutron Stars / B. Haskell, K. Schwenzer - In: Handbook of Gravitational Wave Astronomy / [a cura di] C. Bambi, S. Katsanevas, K.D. Kokkotas. - [s.l] : Springer, 2022. - ISBN 978-981-16-4305-7. - pp. 527-554 [10.1007/978-981-16-4306-4_12]

Isolated Neutron Stars

B. Haskell;
2022

Abstract

Neutron star interiors are a fantastic laboratory for high-density physics in extreme environments. Probing this system with standard electromagnetic observations is, however, a challenging endeavor, as the radiation is only emitted by the outermost layers and is scattered by the interstellar medium. Gravitational waves, on the other hand, while challenging to detect, interact weakly with matter and are likely to carry a clean imprint of the high-density interior of the star. In particular, long-lived, i.e., “continuous” signals from isolated neutron stars can carry a signature of deformations, possibly in crystalline exotic layers of the core, or allow to study modes of oscillation, thus performing gravitational wave asteroseismology of neutron star interiors. In this article, we will review current theoretical models for continuous gravitational wave emission, and observational constraints, both electromagnetic and gravitational. Finally, we will discuss future observational possibilities.
Asteroseismology; Dense matter; Multi-messeneger astrophysics; Neutron stars
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
2022
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
978-981-16-4306-4_12.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1109432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact