In this paper, we prove some splitting results for manifolds supporting a non-constant infinity harmonic function which has at most linear growth on one side. Manifolds with non-negative Ricci or sectional curvature are considered. In dimension $2$, we extend Savin's theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-negative sectional curvature.

On Splitting Complete Manifolds via Infinity Harmonic Functions / D.J. Araújo, M. Magliaro, L. Mari, L.F. Pessoa. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - 2024:18(2024 Sep), pp. 12620-12644. [10.1093/imrn/rnae176]

On Splitting Complete Manifolds via Infinity Harmonic Functions

L. Mari
Penultimo
;
2024

Abstract

In this paper, we prove some splitting results for manifolds supporting a non-constant infinity harmonic function which has at most linear growth on one side. Manifolds with non-negative Ricci or sectional curvature are considered. In dimension $2$, we extend Savin's theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-negative sectional curvature.
Settore MATH-02/B - Geometria
Settore MATH-03/A - Analisi matematica
   Differential-geometric aspects of manifolds via Global Analysis
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20225J97H5_004
set-2024
14-ago-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
rnae176.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 798.62 kB
Formato Adobe PDF
798.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2310.07877v1(1).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 271.07 kB
Formato Adobe PDF
271.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1105948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact