In this paper, we prove some splitting results for manifolds supporting a non-constant infinity harmonic function which has at most linear growth on one side. Manifolds with non-negative Ricci or sectional curvature are considered. In dimension $2$, we extend Savin's theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-negative sectional curvature.
On Splitting Complete Manifolds via Infinity Harmonic Functions / D.J. Araújo, M. Magliaro, L. Mari, L.F. Pessoa. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - 2024:18(2024 Sep), pp. 12620-12644. [10.1093/imrn/rnae176]
On Splitting Complete Manifolds via Infinity Harmonic Functions
L. Mari
Penultimo
;
2024
Abstract
In this paper, we prove some splitting results for manifolds supporting a non-constant infinity harmonic function which has at most linear growth on one side. Manifolds with non-negative Ricci or sectional curvature are considered. In dimension $2$, we extend Savin's theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-negative sectional curvature.File | Dimensione | Formato | |
---|---|---|---|
rnae176.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
798.62 kB
Formato
Adobe PDF
|
798.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2310.07877v1(1).pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
271.07 kB
Formato
Adobe PDF
|
271.07 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.