For every complete and minimally immersed submanifold f: M n → S n + p f\colon M^{n}\to\mathbb{S}^{n+p} whose second fundamental form satisfies | A | 2 ≤ n p / (2 p - 1) \lvert A\rvert^{2}\leq np/(2p-1), we prove that it is either totally geodesic, or (a covering of) a Clifford torus or a Veronese surface in S 4 \mathbb{S}^{4}, thereby extending the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from compact to complete M n M^{n}. We also obtain the corresponding result for complete hypersurfaces with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case, under the optimal bound on the umbilicity tensor. In dimension n ≤ 6 n\leq 6, a pinching theorem for complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni.

Sharp pinching theorems for complete submanifolds in the sphere / M. Magliaro, L. Mari, F. Roing, A. Savas-Halilaj. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 1435-5345. - 814:(2024), pp. 117-134. [10.1515/crelle-2024-0042]

Sharp pinching theorems for complete submanifolds in the sphere

L. Mari
Secondo
;
2024

Abstract

For every complete and minimally immersed submanifold f: M n → S n + p f\colon M^{n}\to\mathbb{S}^{n+p} whose second fundamental form satisfies | A | 2 ≤ n p / (2 p - 1) \lvert A\rvert^{2}\leq np/(2p-1), we prove that it is either totally geodesic, or (a covering of) a Clifford torus or a Veronese surface in S 4 \mathbb{S}^{4}, thereby extending the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from compact to complete M n M^{n}. We also obtain the corresponding result for complete hypersurfaces with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case, under the optimal bound on the umbilicity tensor. In dimension n ≤ 6 n\leq 6, a pinching theorem for complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni.
Settore MAT/03 - Geometria
Settore MATH-02/B - Geometria
Settore MATH-03/A - Analisi matematica
   Differential-geometric aspects of manifolds via Global Analysis
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20225J97H5_004
2024
2-lug-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.1515_crelle-2024-0042.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 307.15 kB
Formato Adobe PDF
307.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1105879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact