Verb Sense Disambiguation is a well-known task in NLP, the aim is to find the correct sense of a verb in a sentence. Recently, this problem has been extended in a multimodal scenario, by exploiting both textual and visual features of ambiguous verbs leading to a new problem, the Visual Verb Sense Disambiguation (VVSD). Here, the sense of a verb is assigned considering the content of an image paired with it rather than a sentence in which the verb appears. Annotating a dataset for this task is more complex than textual disambiguation, because assigning the correct sense to a pair of requires both non-trivial linguistic and visual skills. In this work, differently from the literature, the VVSD task will be performed in a transductive semi-supervised learning (SSL) setting, in which only a small amount of labeled information is required, reducing tremendously the need for annotated data. The disambiguation process is based on a graph-based label propagation method which takes into account mono or multimodal representations for pairs. Experiments have been carried out on the recently published dataset VerSe, the only available dataset for this task. The achieved results outperform the current state-of-the-art by a large margin while using only a small fraction of labeled samples per sense
Transductive Visual Verb Sense Disambiguation / S. Vascon, S. Aslan, G. Bigaglia, L. Giudice, M. Pelillo - In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV)[s.l] : IEEE, 2021. - ISBN 978-1-6654-0477-8. - pp. 3049-3058 (( convegno Winter Conference on Applications of Computer Vision (WACV) tenutosi a Waikoloa, HI, USA nel 2021 [10.1109/WACV48630.2021.00309].
Transductive Visual Verb Sense Disambiguation
S. Vascon
;S. Aslan;M. Pelillo
2021
Abstract
Verb Sense Disambiguation is a well-known task in NLP, the aim is to find the correct sense of a verb in a sentence. Recently, this problem has been extended in a multimodal scenario, by exploiting both textual and visual features of ambiguous verbs leading to a new problem, the Visual Verb Sense Disambiguation (VVSD). Here, the sense of a verb is assigned considering the content of an image paired with it rather than a sentence in which the verb appears. Annotating a dataset for this task is more complex than textual disambiguation, because assigning the correct sense to a pair of requires both non-trivial linguistic and visual skills. In this work, differently from the literature, the VVSD task will be performed in a transductive semi-supervised learning (SSL) setting, in which only a small amount of labeled information is required, reducing tremendously the need for annotated data. The disambiguation process is based on a graph-based label propagation method which takes into account mono or multimodal representations for pairs. Experiments have been carried out on the recently published dataset VerSe, the only available dataset for this task. The achieved results outperform the current state-of-the-art by a large margin while using only a small fraction of labeled samples per sense| File | Dimensione | Formato | |
|---|---|---|---|
|
Vascon_Transductive_Visual_Verb_Sense_Disambiguation_WACV_2021_paper.pdf
accesso riservato
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




