We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel R×[-1,1]. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.

Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow / L. Franzoi, N. Masmoudi, R. Montalto. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 248:(2024), pp. 81.1-81.79. [10.1007/s00205-024-02028-1]

Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow

L. Franzoi
Primo
;
R. Montalto
Ultimo
2024

Abstract

We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel R×[-1,1]. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.
35Q31; 37K55; 76B03
Settore MATH-04/A - Fisica matematica
Settore MATH-03/A - Analisi matematica
   Hamiltonian Dynamics, Normal forms and Water Waves (HamDyWWa)
   HamDyWWa
   EUROPEAN COMMISSION
   101039762
2024
11-set-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00205-024-02028-1.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1105478
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact