We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices, and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/μ, where T is the temperature and μ is the chemical potential.

Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates / W.J. Kwon, G. Moon, J. Choi, S. Won Seo, Y. Shin. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 90:6(2014 Dec 19), pp. 063627.1-063627.6. [10.1103/physreva.90.063627]

Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates

W.J. Kwon
Primo
;
2014

Abstract

We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices, and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/μ, where T is the temperature and μ is the chemical potential.
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
19-dic-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevA.90.063627.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 916.87 kB
Formato Adobe PDF
916.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1403.4658v3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1105234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 128
  • OpenAlex ND
social impact