This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.

A nodally bound-preserving finite element method / G.R. Barrenechea, E.H. Georgoulis, T. Pryer, A. Veeser. - In: IMA JOURNAL OF NUMERICAL ANALYSIS. - ISSN 0272-4979. - 44:4(2024 Jul), pp. 2198-2219. [10.1093/imanum/drad055]

A nodally bound-preserving finite element method

A. Veeser
Ultimo
2024

Abstract

This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.
finite element methods, preserving bounds, preserving positivity
Settore MATH-05/A - Analisi numerica
lug-2024
26-ago-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
drad055.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1105189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact