We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutations of atoms, and has some degree of isometry with the space of conformations. We use these representations to train a nondeep machine learning algorithm to classify the binding between pockets and molecule pairs and show that this approach has a better generalization capability than existing methods.

Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure / R. Beccaria, A. Lazzeri, G. Tiana. - In: JOURNAL OF CHEMICAL INFORMATION AND MODELING. - ISSN 1549-9596. - 64:17(2024 Aug 28), pp. 6758-6767. [10.1021/acs.jcim.4c00752]

Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure

G. Tiana
Ultimo
2024

Abstract

We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutations of atoms, and has some degree of isometry with the space of conformations. We use these representations to train a nondeep machine learning algorithm to classify the binding between pockets and molecule pairs and show that this approach has a better generalization capability than existing methods.
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
28-ago-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
beccaria-et-al-2024-predicting-the-binding-of-small-molecules-to-proteins-through-invariant-representation-of-the-2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 7.46 MB
Formato Adobe PDF
7.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2405.04916v1.pdf

embargo fino al 28/08/2025

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 4.17 MB
Formato Adobe PDF
4.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1103868
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact