We construct an extension of Fock space and prove that it allows for implementing bosonic Bogoliubov transformations in a certain extended sense. While an implementation in the regular sense on Fock space is only possible if a certain operator $ v^*v $ is trace class (this is the well-known Shale-Stinespring condition), the extended implementation works without any restrictions on this operator. This generalizes a recent result of extended implementability, which required $ v^*v $ to have discrete spectrum.

Bogoliubov Transformations Beyond Shale–Stinespring: Generic v∗v for Bosons / S. Lill (SPRINGER INDAM SERIES). - In: Quantum Mathematics II / [a cura di] M. Correggi, M. Falconi. - [s.l] : Springer, 2023. - ISBN 9789819958832. - pp. 331-351 (( convegno INdAM Quantum Meetings tenutosi a Milano nel 2022 [10.1007/978-981-99-5884-9_12].

Bogoliubov Transformations Beyond Shale–Stinespring: Generic v∗v for Bosons

S. Lill
2023

Abstract

We construct an extension of Fock space and prove that it allows for implementing bosonic Bogoliubov transformations in a certain extended sense. While an implementation in the regular sense on Fock space is only possible if a certain operator $ v^*v $ is trace class (this is the well-known Shale-Stinespring condition), the extended implementation works without any restrictions on this operator. This generalizes a recent result of extended implementability, which required $ v^*v $ to have discrete spectrum.
Settore MAT/07 - Fisica Matematica
Settore MATH-04/A - Fisica matematica
2023
Politecnico di Milano
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
BBS_bos_continuous_spectrum_20221016.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 465.32 kB
Formato Adobe PDF
465.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-981-99-5884-9_12.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 720.71 kB
Formato Adobe PDF
720.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1101269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact