We study the soap film capillarity problem, in which soap films are modeled as sets of least perimeter among those having prescribed (small) volume and satisfying a topological spanning condition. When the given boundary is the closed tubular neighborhood in $\mathbb{R}^3$ of a smooth Jordan curve (or, more generally, the closed tubular neighborhood in $\mathbb{R}^d$ of a smooth embedding of $\mathbb{S}^{d-2}$ in a hyperplane), we prove existence and uniqueness of classical minimizers, for which the collapsing phenomenon does not occur. We show that the boundary of the unique minimizer is the union of two symmetric smooth normal graphs over a portion of the plane; the graphs have positive constant mean curvature bounded linearly in terms of the volume parameter, and meet the boundary of the tubular neighbourhood orthogonally. Moreover, we prove uniform bounds on the sectional curvatures in order to show that the boundaries of solutions corresponding to varying volumes are ordered monotonically and produce a foliation of space by constant mean curvature hypersurfaces.
Classical solutions to the soap film capillarity problem for plane boundaries / G. Bevilacqua, S. Stuvard, B. Velichkov. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 392:(2025 Jun 14), pp. 4607-4659. [10.1007/s00208-025-03172-z]
Classical solutions to the soap film capillarity problem for plane boundaries
S. StuvardPenultimo
;
2025
Abstract
We study the soap film capillarity problem, in which soap films are modeled as sets of least perimeter among those having prescribed (small) volume and satisfying a topological spanning condition. When the given boundary is the closed tubular neighborhood in $\mathbb{R}^3$ of a smooth Jordan curve (or, more generally, the closed tubular neighborhood in $\mathbb{R}^d$ of a smooth embedding of $\mathbb{S}^{d-2}$ in a hyperplane), we prove existence and uniqueness of classical minimizers, for which the collapsing phenomenon does not occur. We show that the boundary of the unique minimizer is the union of two symmetric smooth normal graphs over a portion of the plane; the graphs have positive constant mean curvature bounded linearly in terms of the volume parameter, and meet the boundary of the tubular neighbourhood orthogonally. Moreover, we prove uniform bounds on the sectional curvatures in order to show that the boundaries of solutions corresponding to varying volumes are ordered monotonically and produce a foliation of space by constant mean curvature hypersurfaces.| File | Dimensione | Formato | |
|---|---|---|---|
|
Classical solutions to the soap film capillarity problem for plane boundaries (w: Bevilacqua and Velichkov).pdf
accesso riservato
Descrizione: BSV - Classical solutions to the soap films capillarity problem for plane boundaries
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
787.64 kB
Formato
Adobe PDF
|
787.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




