We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach com-bines Γ-spaces and Voevodsky’s framed correspondences into the concept of framed motivic Γ-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic Γ-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, A1-and σ-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the A1-homotopy theory of algebraic varieties.

Framed motivic Γ-spaces / G.A. Garkusha, I.A. Panin, P.A. Oestvaer. - In: IZVESTIYA. MATHEMATICS. - ISSN 1064-5632. - 87:1(2023), pp. 1-28. [10.4213/im9246]

Framed motivic Γ-spaces

P.A. Oestvaer
Ultimo
2023

Abstract

We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach com-bines Γ-spaces and Voevodsky’s framed correspondences into the concept of framed motivic Γ-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic Γ-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, A1-and σ-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the A1-homotopy theory of algebraic varieties.
connective and very effective motivic spectra; framed correspondences; framed motivic Γ-spaces; infinite motivic loop spaces; motivic spaces; Γ-spaces;
Settore MATH-02/B - Geometria
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
1907.00433v3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 277.22 kB
Formato Adobe PDF
277.22 kB Adobe PDF Visualizza/Apri
im9246_eng.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 783.19 kB
Formato Adobe PDF
783.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1100288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact