For Q-factorial klt algebraically integrable adjoint foliated structures, we prove the cone theorem, the contraction theorem, and the existence of flips. Therefore, we deduce the existence of the minimal model program for such structures. We also prove the base-point-freeness theorem for such structures of general type and establish an adjunction formula and the existence of Q-factorial quasi-dlt modifications for algebraically integrable adjoint foliated structures.

Minimal model program for algebraically integrable adjoint foliated structures / P. Cascini, J. Han, J. Liu, F. Meng, C. Spicer, R. Svaldi, L. Xie. - (2024 Aug 26).

Minimal model program for algebraically integrable adjoint foliated structures

R. Svaldi;
2024

Abstract

For Q-factorial klt algebraically integrable adjoint foliated structures, we prove the cone theorem, the contraction theorem, and the existence of flips. Therefore, we deduce the existence of the minimal model program for such structures. We also prove the base-point-freeness theorem for such structures of general type and establish an adjunction formula and the existence of Q-factorial quasi-dlt modifications for algebraically integrable adjoint foliated structures.
Mathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Dynamical Systems; 14E30, 37F75
Settore MAT/03 - Geometria
Settore MATH-02/B - Geometria
26-ago-2024
http://arxiv.org/abs/2408.14258v1
File in questo prodotto:
File Dimensione Formato  
2408.14258v1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 594.42 kB
Formato Adobe PDF
594.42 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1100069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact