This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer- type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.

Quantifiers on languages and codensity monads / M. Gehrke, D. Petrisan, L. Reggio. - In: MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE. - ISSN 0960-1295. - 30:10(2021), pp. 1054-1088. [10.1017/S0960129521000074]

Quantifiers on languages and codensity monads

L. Reggio
2021

Abstract

This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer- type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.
Formal languages; logic on words; codensity monads
Settore MATH-01/A - Logica matematica
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Gehrke, Petrisan, Reggio - Quantifiers on Languages and Codensity Monads [MSCS 2021].pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 832.66 kB
Formato Adobe PDF
832.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1702.08841v3.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 676.6 kB
Formato Adobe PDF
676.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1099930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact