This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer- type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.
Quantifiers on languages and codensity monads / M. Gehrke, D. Petrisan, L. Reggio. - In: MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE. - ISSN 0960-1295. - 30:10(2021), pp. 1054-1088. [10.1017/S0960129521000074]
Quantifiers on languages and codensity monads
L. Reggio
2021
Abstract
This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer- type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.| File | Dimensione | Formato | |
|---|---|---|---|
|
Gehrke, Petrisan, Reggio - Quantifiers on Languages and Codensity Monads [MSCS 2021].pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
832.66 kB
Formato
Adobe PDF
|
832.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
1702.08841v3.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
676.6 kB
Formato
Adobe PDF
|
676.6 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




