A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

A quantitative version of the Gidas-Ni-Nirenberg Theorem / G. Ciraolo, M. Cozzi, M. Perugini, L. Pollastro. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:9(2024 Nov), pp. 110585.1-110585.29. [10.1016/j.jfa.2024.110585]

A quantitative version of the Gidas-Ni-Nirenberg Theorem

G. Ciraolo
Primo
;
M. Cozzi
Secondo
;
M. Perugini
Penultimo
;
L. Pollastro
Ultimo
2024

Abstract

A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Gidas-Ni-Nirenberg Theorem; Semilinear problem; Approximate symmetry
Settore MATH-03/A - Analisi matematica
   Partial differential equations and related geometric-functional inequalities.
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20229M52AS_004
nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
49 - Ciraolo-Cozzi-Perugini-Pollastro-JFA2024.pdf

accesso riservato

Descrizione: Regular Article
Tipologia: Publisher's version/PDF
Dimensione 511.7 kB
Formato Adobe PDF
511.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2308.00409v2.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 334.17 kB
Formato Adobe PDF
334.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1099909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact