A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
A quantitative version of the Gidas-Ni-Nirenberg Theorem / G. Ciraolo, M. Cozzi, M. Perugini, L. Pollastro. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:9(2024 Nov), pp. 110585.1-110585.29. [10.1016/j.jfa.2024.110585]
A quantitative version of the Gidas-Ni-Nirenberg Theorem
G. Ciraolo
Primo
;M. CozziSecondo
;M. PeruginiPenultimo
;L. PollastroUltimo
2024
Abstract
A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.File | Dimensione | Formato | |
---|---|---|---|
49 - Ciraolo-Cozzi-Perugini-Pollastro-JFA2024.pdf
accesso riservato
Descrizione: Regular Article
Tipologia:
Publisher's version/PDF
Dimensione
511.7 kB
Formato
Adobe PDF
|
511.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2308.00409v2.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
334.17 kB
Formato
Adobe PDF
|
334.17 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.