The recent interest in machine learning (ML) techniques has raised concerns about their interpretability, especially if they are to be used in physics. In physics, a good prediction should be justified by a model that connects it to fundamental principles. Graphical methods (i.e. Markov Random Field) are a good compromise between interpretability and accurate forecasting. Our study used the asteroid's hazardousness data provided by CNEOS as a dataset since the underlying physics is well-known. Therefore, we can evaluate how well these methods capture physical laws. In addition, we considered other ML algorithms like Random Forest and Support Vector Machines to have a baseline for accuracy and interpretability. Our findings suggest that graphical methods are a viable choice, as they provide a highly interpretable model with sufficient accuracy.

Hazardous asteroids forecast via Markov Random Fields: A case study for Explainable Artificial Intelligence (XAI) / M. DE CORATO, S. Salini, A. Ferrara, C. Vello. ((Intervento presentato al 110. convegno Congresso Nazionale Società Italiana di Fisica tenutosi a Bologna nel 2024.

Hazardous asteroids forecast via Markov Random Fields: A case study for Explainable Artificial Intelligence (XAI)

M. DE CORATO;S. Salini;A. Ferrara;
2024

Abstract

The recent interest in machine learning (ML) techniques has raised concerns about their interpretability, especially if they are to be used in physics. In physics, a good prediction should be justified by a model that connects it to fundamental principles. Graphical methods (i.e. Markov Random Field) are a good compromise between interpretability and accurate forecasting. Our study used the asteroid's hazardousness data provided by CNEOS as a dataset since the underlying physics is well-known. Therefore, we can evaluate how well these methods capture physical laws. In addition, we considered other ML algorithms like Random Forest and Support Vector Machines to have a baseline for accuracy and interpretability. Our findings suggest that graphical methods are a viable choice, as they provide a highly interpretable model with sufficient accuracy.
13-set-2024
XAI; Artificial Intelligence; Astrophysics; Explainabilit; Markov Random Field
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
Settore INFO-01/A - Informatica
Società Italiana di Fisica
https://2024.congresso.sif.it/talk/261
Hazardous asteroids forecast via Markov Random Fields: A case study for Explainable Artificial Intelligence (XAI) / M. DE CORATO, S. Salini, A. Ferrara, C. Vello. ((Intervento presentato al 110. convegno Congresso Nazionale Società Italiana di Fisica tenutosi a Bologna nel 2024.
Conference Object
File in questo prodotto:
File Dimensione Formato  
atticon15662.pdf

accesso aperto

Descrizione: Presentazione discussa durante l'intervento
Tipologia: Altro
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1097835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact