Gonadal hormones affect immunoglobulin G (IgG) glycosylation, and the more proinflammatory IgG glycome composition might be one of the molecular mechanisms behind the increased proinflammatory phenotype in perimenopause. Using ultra-high-performance liquid chromatography, we analyzed IgG glycome composition in 5,080 samples from 1940 pre-, peri-, and postmenopausal women. Statistically significant decrease in galactosylation and sialylation was observed in postmenopausal women. Furthermore, during the transition from pre- to postmenopausal period, the rate of increase in agalactosylated structures (0.051/yr; 95%CI = 0.043-0.059, p < 0.001) and decrease in digalactosylated (-0.043/yr; 95%CI = -0.050 to -0.037, p < 0.001) and monosialylated glycans (-0.029/yr; 95%CI = -0.034 to -0.024, p < 0.001) were significantly higher than in either pre- or postmenopausal periods. The conversion to the more proinflammatory IgG glycome and the resulting decrease in the ability of IgG to suppress low-grade chronic inflammation may be an important molecular mechanism mediating the increased health risk in perimenopause and postmenopause.

Immunoglobulin G glycome composition in transition from premenopause to postmenopause / H. Deris, D. Kifer, A. Cindric, T. Petrovic, A. Cvetko, I. Trbojevic-Akmacic, I. Kolcic, O. Polasek, L. Newson, T. Spector, C. Menni, G. Lauc. - In: ISCIENCE. - ISSN 2589-0042. - 25:3(2022), pp. 103897.1-103897.13. [10.1016/j.isci.2022.103897]

Immunoglobulin G glycome composition in transition from premenopause to postmenopause

C. Menni;
2022

Abstract

Gonadal hormones affect immunoglobulin G (IgG) glycosylation, and the more proinflammatory IgG glycome composition might be one of the molecular mechanisms behind the increased proinflammatory phenotype in perimenopause. Using ultra-high-performance liquid chromatography, we analyzed IgG glycome composition in 5,080 samples from 1940 pre-, peri-, and postmenopausal women. Statistically significant decrease in galactosylation and sialylation was observed in postmenopausal women. Furthermore, during the transition from pre- to postmenopausal period, the rate of increase in agalactosylated structures (0.051/yr; 95%CI = 0.043-0.059, p < 0.001) and decrease in digalactosylated (-0.043/yr; 95%CI = -0.050 to -0.037, p < 0.001) and monosialylated glycans (-0.029/yr; 95%CI = -0.034 to -0.024, p < 0.001) were significantly higher than in either pre- or postmenopausal periods. The conversion to the more proinflammatory IgG glycome and the resulting decrease in the ability of IgG to suppress low-grade chronic inflammation may be an important molecular mechanism mediating the increased health risk in perimenopause and postmenopause.
Glycomics; Molecular biology; Reproductive medicine
Settore MEDS-24/A - Statistica medica
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2589004222001675-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1097428
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact