We present some old and new results in the enumeration of random walks in one dimension, mostly developed in work on enumerative combinatorics. The relation between the trace of the nth power of a tridiagonal matrix and the enumeration of weighted paths of n steps allows an easier combinatorial enumeration of paths. It also seems promising for the theory of tridiagonal random matrices.
Enumeration of simple random walks and tridiagonal matrices / G.M. Cicuta, M. Contedini, L.G. Molinari. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - 35:5(2002), pp. 1125-1146. [10.1088/0305-4470/35/5/302]
Enumeration of simple random walks and tridiagonal matrices
L.G. Molinari
Ultimo
2002
Abstract
We present some old and new results in the enumeration of random walks in one dimension, mostly developed in work on enumerative combinatorics. The relation between the trace of the nth power of a tridiagonal matrix and the enumeration of weighted paths of n steps allows an easier combinatorial enumeration of paths. It also seems promising for the theory of tridiagonal random matrices.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
JPHYSA35(02)1125.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
185.93 kB
Formato
Adobe PDF
|
185.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




