A deficiency in apoptosis is one of the key events in the proliferation and resistance of malignant cells to antitumor agents; for these reasons, the search for apoptosis-inducing drugs represents a valuable approach for the development of novel anticancer therapies. In this study we report the first example of conformationally restrained analogues of ceramide (compounds 1-4), where the polar portion of the molecule has been replaced by a thiouracil (1, 3) or uracil (2, 4) ring. The evaluation of their biologic activity on CCRF-CEM human leukemia cells demonstrated that the most active was compound 1 followed by compound 2 (mean 50% inhibition of cell proliferation [IC50] 1.7 and 7.9 μM, respectively), while compounds 3 and 4 were inactive, as were uracil, thiouracil, and 5,6-dimethyluracil, the pyrimidine moieties of compounds 1-4. For comparison, the IC50 of the reference substance, the cell-permeable C2-ceramide, was 31.6 μM. Compounds 1 and 2 and C2-ceramide were able to trigger apoptosis, as shown by the occurrence of DNA and nuclear fragmentation, and to release cytochrome c from treated cells. The treatment of female CD-1 nu/nu athymic mice bearing a WiDr human colon xenograft with the most active compound 1 at 2, 10, 50, and 200 mg/kg ip daily for 10 days resulted in an antitumor effect that was equivalent at 50 mg/kg or superior (200 mg/kg) to that of cyclophosphamide, 20 mg/kg ip daily, delivered on the same schedule, with markedly lower systemic toxicity. In conclusion, the present study demonstrates that the new ceramide analogues 1 and 2 are characterized by in vitro and in vivo antitumor activity and low toxicity.

Design, synthesis, and characterization of the antitumor activity of novel ceramide analogues / M. Macchia, B. S., S. Bertini, V. DI BUSSOLO, S. Fogli, G. E., G. E., F. Minutolo, R. Danesi. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 44:23(2001 Nov 08), pp. 3994-4000. [10.1021/jm010947r]

Design, synthesis, and characterization of the antitumor activity of novel ceramide analogues

R. Danesi
Ultimo
2001

Abstract

A deficiency in apoptosis is one of the key events in the proliferation and resistance of malignant cells to antitumor agents; for these reasons, the search for apoptosis-inducing drugs represents a valuable approach for the development of novel anticancer therapies. In this study we report the first example of conformationally restrained analogues of ceramide (compounds 1-4), where the polar portion of the molecule has been replaced by a thiouracil (1, 3) or uracil (2, 4) ring. The evaluation of their biologic activity on CCRF-CEM human leukemia cells demonstrated that the most active was compound 1 followed by compound 2 (mean 50% inhibition of cell proliferation [IC50] 1.7 and 7.9 μM, respectively), while compounds 3 and 4 were inactive, as were uracil, thiouracil, and 5,6-dimethyluracil, the pyrimidine moieties of compounds 1-4. For comparison, the IC50 of the reference substance, the cell-permeable C2-ceramide, was 31.6 μM. Compounds 1 and 2 and C2-ceramide were able to trigger apoptosis, as shown by the occurrence of DNA and nuclear fragmentation, and to release cytochrome c from treated cells. The treatment of female CD-1 nu/nu athymic mice bearing a WiDr human colon xenograft with the most active compound 1 at 2, 10, 50, and 200 mg/kg ip daily for 10 days resulted in an antitumor effect that was equivalent at 50 mg/kg or superior (200 mg/kg) to that of cyclophosphamide, 20 mg/kg ip daily, delivered on the same schedule, with markedly lower systemic toxicity. In conclusion, the present study demonstrates that the new ceramide analogues 1 and 2 are characterized by in vitro and in vivo antitumor activity and low toxicity.
Settore BIO/14 - Farmacologia
8-nov-2001
3-ott-2001
Article (author)
File in questo prodotto:
File Dimensione Formato  
macchia-et-al-2001-design-synthesis-and-characterization-of-the-antitumor-activity-of-novel-ceramide-analogues.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 84.12 kB
Formato Adobe PDF
84.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1092651
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 47
  • OpenAlex ND
social impact