We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let epsilon be the size of the perturbation. We prove that for initial data close in energy norm to an N -gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain O(epsilon^(1/ 2(N +1) ) close to their initial value for times exponentially long with  epsilon^− 1/2(N+1).

A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori / D. Bambusi, P. Gérard. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 307:3(2024 Jul), pp. 54.1-54.20. [10.1007/s00209-024-03539-z]

A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori

D. Bambusi
Primo
;
2024

Abstract

We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let epsilon be the size of the perturbation. We prove that for initial data close in energy norm to an N -gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain O(epsilon^(1/ 2(N +1) ) close to their initial value for times exponentially long with  epsilon^− 1/2(N+1).
Nekhoroshev theorem · Benjamin-Ono equation · Hamiltonian perturbation theory;
Settore MAT/05 - Analisi Matematica
Settore MAT/07 - Fisica Matematica
Settore MATH-03/A - Analisi matematica
Settore MATH-04/A - Fisica matematica
lug-2024
19-giu-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
BO_MathZ.pdf

accesso aperto

Descrizione: online first
Tipologia: Publisher's version/PDF
Dimensione 335.82 kB
Formato Adobe PDF
335.82 kB Adobe PDF Visualizza/Apri
s00209-024-03539-z.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 335.56 kB
Formato Adobe PDF
335.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1089808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex 3
social impact